Triorganotin(IV) derivatives of several 4-acyl-5-pyrazolonato ligands: synthesis, spectroscopic characterization and behavior in solution Crystal structure
 of aquotrimethyl(4-p-methoxybenzoyl-1-phenyl-3-methyl-pyrazolon-5-ato) tin(IV)

Fabio Marchetti ${ }^{\text {a,* }}$, Claudio Pettinari ${ }^{\text {a }}$, Augusto Cingolani ${ }^{\text {a }}$, Giancarlo Gioia Lobbia ${ }^{\text {a }}$, Alberto Cassetta ${ }^{\text {b }}$, Luisa Barba ${ }^{\text {b }}$
${ }^{a}$ Dipartimento di Scienze Chimiche, Università degli Studi, via S. Agostino 1, 62032 Camerino, Macerata, Italy
${ }^{\mathrm{b}}$ Istituto di Strutturistica Chimica ' G. Giacomello", Consiglio Nazionale dele Ricerche, Padriciano 99, 30412 Trieste, Italy

Received 30 October 1995

Abstract

New triorganotin(IV) derivatives $\left[(\mathrm{Q}) \mathrm{SnR}_{3} \cdot x\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(x=0, \mathrm{R}=\mathrm{Ph} ; x=1, \mathrm{R}=\mathrm{Me}\right.$ and $\left.{ }^{\mathrm{n}} \mathrm{Bu}\right)$ (in general $\mathrm{QH}=1-\mathrm{R}^{\prime}-3$-methyl-4- $\mathrm{R}^{\prime \prime}$ ($\mathrm{C}=\mathrm{O}$)-pyrazol-5-one; in detail $\mathrm{Q}^{\prime} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{Q}_{\mathrm{A}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{Q}_{\mathrm{N}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=p-\mathrm{NO}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{Q}_{\mathrm{Br}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{Q}^{\prime \prime} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3} ; \mathrm{Q}_{\mathrm{Cl}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{CCl}_{3} ; \mathrm{Q}_{\mathrm{F}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{CF}_{3}$; $Q_{M} H: R^{\prime}=C H_{3}, R^{\prime \prime}=C_{6} H_{5} ; Q_{D} H: R^{\prime}=C_{3}, R^{\prime \prime}=\mathrm{CH}_{3}$) have been synthesized and characterized by analysis and spectral (IR and ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn} \mathrm{NMR}$) data. The (Q) SnPh_{3} derivatives are five-coordinated in the solid state, with a likely skewed cis-trigonal bipyramidal (cis-TBP) geometry around the tin center and the ligand (Q)- acting in the bidentate form. In $\left[(Q) \mathrm{SnR}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ derivatives ($\mathrm{R}={ }^{\mathrm{n}} \mathrm{Bu}$ or Me) a coordination site is occupied by water, with the ligand $(\mathrm{Q})^{-}$coordinating in a monodentate fashion. The crystal structure of [$\left.\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ has been determined: the tin atom is found in a distorted TBP environment, with the methyls in the equatorial positions. Two of the $\mathrm{Sn}-\mathrm{C}$ bond lengths are normal (2.11(1) and 2.08(2) \AA) whereas the third is longer ($2.18(2) \AA$); the ligand binds the metal atom through one carbonyl oxygen in the apical position $\left(\mathrm{Sn}-\mathrm{O}=2.10(1) \AA\right.$). The bond length between $\mathrm{H}_{2} \mathrm{O}$ and Sn is longer (2.41(2) \AA), and the $\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ angle is $174.9(5)^{\circ}$. H atoms of water are involved in an intermolecular H -bond network with uncoordinated carbonyl and the pyridinic N atom of the ligand. In chloroform solution the $\left[(\mathrm{Q}) \mathrm{SnR}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ derivatives ($\mathrm{R}=\mathrm{Me}$ or ${ }^{n} \mathrm{Bu}$) lost the molecule of water and adopt a tetrahedral arrangement. They also give rise to a slow disproportionation, yielding SnR_{4} and $\left[(\mathrm{Q})_{2} \mathrm{SnR}_{2}\right]$ derivatives.

Keywords: Tin; X-ray structure; Pyrazolonato complexes; Synthesis; NMR

1. Introduction

Many organotin(IV) derivatives are known as potential biocides [1]. The fungicidal and antibacterial properties in vitro of this class of compound have the following order of increased activity [2]:
$\mathrm{RSnX}_{3}<\mathrm{R}_{2} \mathrm{SnX} \mathrm{X}_{2}<\mathrm{R}_{4} \mathrm{Sn} \ll \mathrm{R}_{3} \mathrm{SnX}$
It has been previously suggested [3] that the X group can exert some effect on the biological properties of

[^0]organotin compounds; Bluden et al. [4] observed a variation in activity on changing the coordination number about the tin atom. This encouraged us to investigate the linking between triorganotin(IV) center and 4 -acyl-5-pyrazolones, a family of flexible β-diketonate ligands, widely used as extractants [5], and well known for their applications as analgesics, antipyretics, anti-inflammatories and insecticides [6].

In recent years we have studied the coordination behavior of these bidentate oxygen-donors and reported the synthesis and characterization of tin(II)bis(4-acyl-5pyrazolonate) and of tin(IV)-, mono- or diorgano-
tin(IV)-derivatives [7]. In this paper we extend our investigation to interaction between the 4-acyl-5pyrazolones in Fig. 1, and triphenyl-, trimethyl- and tributyltin(IV) moieties, together with a close examination of the physicochemical and structural features of
the derivatives obtained. This study is also directed to clarify the real behavior of 4-acyl-5-pyrazolones with respect to trioganotin(IV) moieties, because a recent paper [8] on the synthesis and characterization of some triphenyl- and tributyltin(IV)(4-acylpyrazolon-5-ato)

Table 1
Analytical data of compounds 1-27

Compound	No.	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Elemental analyses: found(calcd.) (\%)		
				C	H	N
(Q ${ }^{\prime}$) SnPh_{3}	1	85	136-138	66.86	4.84	4.39
$\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Sn}$				(67.01)	(4.49)	(4.46)
$\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnPh}_{3}$	2	52	127-129	65.71	4.84	4.14
$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(65.78)	(4.60)	(4.14)
$\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnPh}_{3}$	3	67	153-155	61.93	4.23	6.23
$\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Sn}$				(62.53)	(4.05)	(6.25)
$\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnPh}_{3}$	4	78	149-151	59.42	3.98	3.71
$\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrSn}$				(59.53)	(3.85)	(3.97)
($\mathrm{Q}^{\prime \prime}$) SnPh_{3}	5	80	137-138	63.55	4.85	4.58
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Sn}$				(63.75)	(4.64)	(4.96)
$\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnPh}_{3}$	6	58	154-156	53.70	3.60	3.88
$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{3} \mathrm{Sn}$				(53.90)	(3.47)	(4.19)
$\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnPh}_{3}$	7	64	108-110	58.27	3.92	4.13
$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Sn}$				(58.19)	(3.74)	(4.52)
$\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnPh}_{3}$	8	50	96-99	63.45	4.50	4.68
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Sn}$				(63.75)	(4.64)	(4.96)
$\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnPh}_{3}$	9	52	94-97	59.46	4.96	5.41
$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Sn}$				(59.68)	(4.81)	(5.57)
$\left[\left(Q^{\prime}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	10	77	110-113	59.78	7.38	4.75
$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(59.51)	(7.23)	(4.79)
$\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	11	86	102-107	58.23	7.52	4.33
$\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Sn}$				(58.55)	(7.21)	(4.55)
$\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	12	90	108-115	55.06	6.71	6.45
$\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Sn}$				(55.26)	(6.56)	(6.67)
$\left[\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	13	85	103-106	52.21	6.37	4.38
$\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{BrSn}$				(52.44)	(6.22)	(4.22)
$\left[\left(Q^{\prime \prime}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$]	14	76	oil	54.89	7.65	5.17
$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(55.09)	(7.70)	(5.35)
$\left[\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	15	60	oil	45.81	6.06	4.30
$\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{3} \mathrm{Sn}$				(46.00)	(5.95)	(4.47)
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	16	75	oil	49.78	6.60	4.59
$\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{Sn}$				(49.94)	(6.46)	(4.85)
$\left[\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	17	64	103-107	54.69	7.84	5.18
$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(55.09)	(7.70)	(5.35)
$\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	18	56	oil	49.19	8.47	6.15
$\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(49.48)	(8.30)	(6.07)
[(Q ${ }^{\prime}$)SnMe ${ }_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)$]	19	64	192-195	52.29	5.45	5.86
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(52.32)	(5.27)	(6.10)
$\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	20	58	125-129	51.04	5.45	5.53
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Sn}$				(51.57)	(5.36)	(5.73)
$\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	21	73	150-155	47.57	4.33	8.17
$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Sn}$				(47.65)	(4.60)	(8.34)
$\left[\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	22	68	228-230	44.96		5.36
$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{BrSn}$				(44.65)	(4.31)	(5.21)
$\left[\left(\mathrm{Q}^{\prime \prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	23	70	227-229	45.67	5.36	7.25
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(45.38)	(5.59)	(7.06)
$\left[\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	24	55	110-114	35.76	3.76	5.43
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{3} \mathrm{Sn}$				(36.01)	(3.83)	(5.60)
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	25	40	oil	40.16	4.51	6.32
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{Sn}$				(39.95)	(4.25)	(6.21)
[($\left.\left.\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	26	64	oil	45.22	5.83	6.89
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(45.38)	(5.59)	(7.06)
$\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	27	62	120-124	35.48	6.26	8.07
$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Sn}$				(35.86)	(6.02)	(8.36)

Table 2
IR data ${ }^{\text {a }}$ of ligands and derivatives 1-27

Compound	>2500	1700-1500	$\mathrm{Sn}-\mathrm{O}$	$\mathrm{Sn}-\mathrm{C}$
Q'H	2700 s br	1599s, 1570sh, 1560s, 1554s, 1536sh, 1498s		
$\begin{aligned} & \left(\mathrm{Q}^{\prime}\right) \mathrm{SnPh}_{3} \\ & 1 \end{aligned}$	3070w, 3052w	1600s, $1593 \mathrm{~m}, 1587 \mathrm{~m}, 1570 \mathrm{~m}, 1561 \mathrm{~s}, 1540 \mathrm{w}$	$450 \mathrm{vs}, 404 \mathrm{~m}$	450vs, 277s
		1518s, 1508sh		233s
	b 3070w, 3050w	$1604 \mathrm{vs}, 1597 \mathrm{~m}, 1587 \mathrm{~m}, 1574 \mathrm{~m}, 1525 \mathrm{~m}$	451 vs	451 vs, 277 vs
		1518m, 1514w, 1510w		235s
$\begin{aligned} & {\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & \quad 10 \end{aligned}$	3150 s br, 3070w	$1665 \mathrm{~m}, 1599 \mathrm{~s}, 1592 \mathrm{~s}, 1568 \mathrm{~s}, 1538 \mathrm{vs}, 1516 \mathrm{~m}$	441m, 376w	607m, 507s
	3045w	1505 m		
	${ }^{\text {b }} 3691 \mathrm{~s}, 3450 \mathrm{~s} \mathrm{br}$	$1660 \mathrm{~m}, 1620 \mathrm{sh}, 1610 \mathrm{~s}, 1597 \mathrm{sh}, 1577 \mathrm{~m}$	454m	$614 \mathrm{~m}, 507 \mathrm{~m}$
	3070w	$1530 \mathrm{~m}, 1522 \mathrm{~m}, 1512 \mathrm{~m}, 1501 \mathrm{~s}$		
$\begin{aligned} & {\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & 19 \end{aligned}$	3140s br, 3070w	$1662 \mathrm{~m}, 1599 \mathrm{~s}, 1591 \mathrm{~s}, 1568 \mathrm{~s}, 1540 \mathrm{~s}, 1515 \mathrm{~s}$	433m, 369w	558s, 546 s
	3035 w	1504 m		
	${ }^{\text {b }} 3682 \mathrm{~s}, 3440 \mathrm{mbr}$	$1618 \mathrm{sh}, 1610 \mathrm{~s}, 1599 \mathrm{~s}, 1578 \mathrm{~m}, 1536 \mathrm{~m}, 1524 \mathrm{~m}$	466m, 366w	552s, 541 s
	3071w, 3035w	$1517 \mathrm{~m}, 1502 \mathrm{~m}$		
$\begin{aligned} & \mathrm{Q}_{\mathrm{A}} \mathrm{H} \\ & \left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnPh}_{3} \\ & \quad \mathbf{2} \end{aligned}$	2800s br	$1608 \mathrm{~s}, 1560 \mathrm{~s}, 1515 \mathrm{~s}, 1500 \mathrm{~m}$		
	3073w, 3048w	$1599 \mathrm{vs}, 1583 \mathrm{~s}, 1574 \mathrm{~m}, 1567 \mathrm{~m}, 1563 \mathrm{~m}, 1558 \mathrm{~s}$	451vs, 421 m	$451 \mathrm{vs}, 277 \mathrm{~s}$
		$1539 \mathrm{~m}, 1531 \mathrm{~s}, 1520 \mathrm{~m}, 1515 \mathrm{~m}, 1505 \mathrm{vs}$		238 s
	${ }^{\text {b }} 3053$ w	1602s, $1596 \mathrm{~s}, 1584 \mathrm{~s}, 1564 \mathrm{~s}, 1537 \mathrm{~m}, 1524 \mathrm{~m}$	450vs, 419w	$450 \mathrm{vs}, 270 \mathrm{vs}$
		1513m		235m
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & \quad 11 \end{aligned}$	3120s br, 3042w	$1660 \mathrm{~m}, 1609 \mathrm{~s}, 1599 \mathrm{~m}, 1589 \mathrm{~s}, 1567 \mathrm{~m}, 1555 \mathrm{~m}$	457m, 419m	605s, 510s
		1537s, 1504 m	410 m	
	${ }^{\text {b }} 3692 \mathrm{~s}, 3378 \mathrm{mbr}$	$1612 \mathrm{sh}, 1603 \mathrm{vs}, 1572 \mathrm{~m}, 1566 \mathrm{sh}, 1532 \mathrm{~m}$	452m, 443m	$610 \mathrm{vs}, 509 \mathrm{~s}$
		$1512 \mathrm{sh}, 1505 \mathrm{~m}$	421 m	
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & \quad 20 \end{aligned}$	3140 s br, 3068w	1657m, 1604s, 1594s, 1568m, 1556m, 1537s	464m, 422m	$557 \mathrm{~m}, 545 \mathrm{~s}$
	3037w	1504s		
	${ }^{\text {b }} 3676 \mathrm{~s}, 3412 \mathrm{mbr}$	$1645 \mathrm{~m}, 1604 \mathrm{vs}, 1571 \mathrm{~m}, 1566 \mathrm{sh}, 1532 \mathrm{~m}$	442m, 422m	549vs, 536sh
		$1508 \mathrm{~s}, 1504 \mathrm{~m}$		513 m
$\mathrm{Q}_{\mathrm{N}} \mathrm{H}$	2600s br	1633s, $1621 \mathrm{~s}, 1615 \mathrm{~s}, 1600 \mathrm{~m}, 1574 \mathrm{~m}, 1557 \mathrm{~s}$		
		$1537 \mathrm{~m}, 1519 \mathrm{~s}, 1504 \mathrm{~s}$		
$\begin{aligned} & \left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnPh}_{3} \\ & \mathbf{3} \end{aligned}$	3075w, 3050w	1608s, $1593 \mathrm{vs}, 1584 \mathrm{~s}, 1574 \mathrm{~s}, 1565 \mathrm{~m}, 1557 \mathrm{~s}$	452vs, 392 m	439s, 278vs
		$1538 \mathrm{~m}, 1530 \mathrm{~m}, 1520 \mathrm{~s}, 1506 \mathrm{~m}$		234vs
	${ }^{\text {b }} 3069$ w, 3050w	$1609 \mathrm{~s} 1601 \mathrm{~s}, 1596 \mathrm{~s}, 1586 \mathrm{~s}, 1578 \mathrm{~m}, 1570 \mathrm{sh}$	451 vs , 383m	$451 \mathrm{vs}, 279 \mathrm{~s}$
		$1532 \mathrm{~m}, 1528 \mathrm{~m}, 1524 \mathrm{w}, 1518 \mathrm{~m}, 1514 \mathrm{w}, 1498 \mathrm{~s}$		$233 \mathrm{~s}$
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & \quad 12 \end{aligned}$	3130s br, 3044w	$1655 \mathrm{~m}, 1612 \mathrm{~m}, 1593 \mathrm{sh}, 1583 \mathrm{vs}, 1572 \mathrm{~m}$	452s, 391 m	614s, 510s
		$1562 \mathrm{sh}, 1537 \mathrm{vs}, 1529 \mathrm{~s}, 1515 \mathrm{sh}, 1502 \mathrm{~m}$		
	${ }^{\text {b }} 3684 \mathrm{~s}, 3450 \mathrm{~s}$ br	$1710 \mathrm{~m}, 1620 \mathrm{~s}, 1599 \mathrm{~s}, 1583 \mathrm{sh}, 1529 \mathrm{~m}$	451s, 381 m	612m, 509s
	$3063 \mathrm{w}, 3050 \mathrm{w}$	$1518 \mathrm{~m}, 1514 \mathrm{~m}, 1502 \mathrm{~s}$		
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & \quad 21 \end{aligned}$	3140 s br, 3031w	$1663 \mathrm{~m}, 1610 \mathrm{~s}, 1595 \mathrm{sh}, 1590 \mathrm{~s}, 1568 \mathrm{~m}$	470s, 419w	558s, 550s
		$1540 \mathrm{~s}, 1525 \mathrm{~s}, 1510 \mathrm{~s}$		
	${ }^{\mathrm{b}} 3676 \mathrm{~s}, 3400 \mathrm{~s}$ br 3063w, 3044w	$1620 \mathrm{~s}, 1599 \mathrm{~s}, 1536 \mathrm{~s}, 1520 \mathrm{~m}, 1509 \mathrm{~s}$	452s, 418m	552vs, 538m
		1502 m		
$\mathrm{Q}_{\mathrm{Br}} \mathrm{H}$	2750 s br	$1637 \mathrm{sh}, 1617 \mathrm{~s}, 1591 \mathrm{~s}, 1583 \mathrm{~s}, 1565 \mathrm{~s}, 1555 \mathrm{~s}$		
		$1515 \mathrm{~s}, 1498 \mathrm{~s}$		
$\underset{4}{\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnPh}_{3}}$	3068w, 3046w	$1596 \mathrm{~s}, 1584 \mathrm{~s}, 1572 \mathrm{~m}, 1560 \mathrm{~m}, 1555 \mathrm{sh}, 1524 \mathrm{~s}$	457vs, 394s	445vs, 278vs
		$1518 \mathrm{sh}, 1510 \mathrm{~m}$		239 vs
	${ }^{\text {b }} 3064 w, 3020$ w	$1605 \mathrm{~s}, 1587 \mathrm{~s}, 1578 \mathrm{sh}, 1569 \mathrm{~m}, 1560 \mathrm{~m}, 1508 \mathrm{~m}$	449vs, 399m	449 vs , 279vs
				235s
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{Br}_{\mathrm{B}}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & \quad \mathbf{1 3} \end{aligned}$	3160 s br, 3045 w	$1666 \mathrm{~m}, 1593 \mathrm{~s}, 1584 \mathrm{sh}, 1565 \mathrm{~m}, 1556 \mathrm{~m}, 1536 \mathrm{~s}$	$468 \mathrm{~m}, 403 \mathrm{~m}$	609s, 508s
		$1514 \mathrm{~s}, 1503 \mathrm{~s}$		
	${ }^{\text {b }} 3688 \mathrm{~s}, 3438 \mathrm{~m}$ br	$1649 \mathrm{sh}, 1612 \mathrm{vs}, 1598 \mathrm{~s}, 1588 \mathrm{~s}, 1561 \mathrm{~m}, 1530 \mathrm{~m}$	441 s, 404m	$613 \mathrm{~s}, 508 \mathrm{vs}$
		1506 m		
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & \end{aligned}$	$\begin{aligned} & 3160 \mathrm{~s} \mathrm{br}, 3070 \mathrm{w} \\ & 3034 \mathrm{w} \\ & \mathrm{~b} 3682 \mathrm{~s}, 3378 \mathrm{~m} \text { br } \end{aligned}$	1654sh, 1622s, $1617 \mathrm{sh}, 1588 \mathrm{~s}, 1557 \mathrm{~m}, 1538 \mathrm{~s}$	440m, 383m	554s, 507 m
		$1503 \mathrm{~m}$		
		$1655 \mathrm{sh}, 1620 \mathrm{~s}, 1612 \mathrm{vs}, 1589 \mathrm{~s}, 1558 \mathrm{~m}, 1537 \mathrm{~m}$	450sh, 443vs	$553 \mathrm{~s}, 538 \mathrm{~m}$
		1503 s	388 m	509 s
$Q^{\prime \prime} \mathrm{H}$	2600 s br	1622s, $1614 \mathrm{~s}, 1609 \mathrm{~s}, 1592 \mathrm{~s}, 1580 \mathrm{~s}, 1574 \mathrm{~s}$		
		$1567 \mathrm{~s}, 1557 \mathrm{~s}, 1538 \mathrm{~m}, 1495 \mathrm{~s}$		
$\left(\mathrm{Q}^{\prime \prime}\right) \mathrm{SnPh}_{3}$	3070w, 3050w	$1613 \mathrm{~s}, 1597 \mathrm{~m}, 1588 \mathrm{~m}, 1577 \mathrm{~m}, 1568 \mathrm{~m}$	448 vs , 403m	448vs, 277 vs
5		1561w, 1544w, 1524s, 1519sh, 1508m		237 vs
$\left[\left(\mathrm{Q}^{\prime \prime}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	3150 s br, 3045w	$1667 \mathrm{~m}, 1618 \mathrm{sh}, 1596 \mathrm{~s}, 1581 \mathrm{~s}, 1567 \mathrm{sh}, 1528 \mathrm{~s}$	445s, 396s	606s, 511 m
14		1501 m		
$\begin{aligned} & {\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & 23 \end{aligned}$	3150s br, 3075w	$1595 \mathrm{~s}, 1571 \mathrm{~s}, 1540 \mathrm{~s}, 1523 \mathrm{~s}, 1505 \mathrm{~s}$	$437 \mathrm{~m}, 397$ w	$551 \mathrm{vs}, 511 \mathrm{~s}$

Table 2 (continued)

Compound	>2500	1700-1500	$\mathrm{Sn}-\mathrm{O}$	$\mathrm{Sn}-\mathrm{C}$
$\overline{\mathrm{Q}_{\mathrm{Cl}} \mathrm{H}}$	2700 s br	1671s, 1654s, 1636s, 1628sh, 1592s, 1578sh $1560 \mathrm{~s}, 1533 \mathrm{~m}, 1519 \mathrm{~m}, 1504 \mathrm{~s}$		
$\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnPh}_{3}$	3065w, 3045w	1633s, 1622vs, 1616s, 1595s, 1569m, 1577m 1538w, 1531w, 1515s, 1505s	451vs, 396s	$\begin{aligned} & \text { 443vs, 280s } \\ & \text { 237s } \end{aligned}$
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & \mathbf{1 5} \end{aligned}$	3120 s br	$1665 \mathrm{~m}, 1641 \mathrm{~s}, 1598 \mathrm{~m}, 1560 \mathrm{w}, 1517 \mathrm{~s}, 1500 \mathrm{~s}$	457m, 397w	$614 \mathrm{~m}, 522 \mathrm{~m}$
$\underset{24}{\left[\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]}$	3120s br	1665sh, 1658s, 1598s, 1554w, 1526s, 1500s	465m, 390w	552vs, 545s
$\mathrm{Q}_{\mathrm{F}} \mathrm{H}$	2500s br	1681, 1651s, $1634 \mathrm{~m}, 1622 \mathrm{~s}, 1594 \mathrm{~m}, 1585 \mathrm{sh}$ $1557 \mathrm{~s}, 1538 \mathrm{~m}, 1515 \mathrm{~m}, 1505 \mathrm{~m}$		
$\underset{7}{\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnPh}_{3}}$	3064w, 3044w	1634vs, $1620 \mathrm{sh}, 1594 \mathrm{~s}, 1581 \mathrm{~m}, 1570 \mathrm{~m}$ 1561sh, $1532 \mathrm{~s}, 1507 \mathrm{~m}$	$455 \mathrm{~s}, 370 \mathrm{~m}$	$\begin{aligned} & \text { 444vs, } 280 \mathrm{~s} \\ & 229 \mathrm{~s} \end{aligned}$
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & 16 \end{aligned}$	3130s br	$1662 \mathrm{~m}, 1649 \mathrm{vs}, 1599 \mathrm{~m}, 1529 \mathrm{~s}, 1502 \mathrm{~s}$	453w, 363m	615m, 508m
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	3120s br	1666m, 1654s, 1598s, 1545s, 1523s, 1502s	424m, 377w	570s, 512 m
$\mathrm{Q}_{\mathrm{M}} \mathrm{H}$	2500 s br	$1632 \mathrm{~s}, 1620 \mathrm{sh}, 1614 \mathrm{~s}, 1599 \mathrm{~s}, 1584 \mathrm{~s}, 1574 \mathrm{~s}$ $1568 \mathrm{~m}, 1557 \mathrm{~m}, 1538 \mathrm{~m}, 1510 \mathrm{~m}, 1505 \mathrm{~s}$		
$\underset{8}{\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnPh}_{3}}$	3052w	$1603 \mathrm{~s}, 1595 \mathrm{sh}, 1574 \mathrm{~s}, 1558 \mathrm{~m}, 1537 \mathrm{~m}, 1525 \mathrm{~m}$ $1520 \mathrm{~m}, 1510 \mathrm{sh}, 1503 \mathrm{~s}$	461s, 391 m	$\begin{aligned} & 456 \mathrm{~s}, 273 \mathrm{~s} \\ & 240 \mathrm{~s} \end{aligned}$
$\left[\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	3150s br, 3035w	$1656 \mathrm{~m}, 1605 \mathrm{~s}, 1575 \mathrm{~s}, 1522 \mathrm{~s}, 1505 \mathrm{~m}$	455m, 387m	608vs, 526s
$\underset{26}{\left[\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]}$	3170 s br, 3040w	$\begin{aligned} & 1599 \mathrm{~s}, 1592 \mathrm{~s}, 1588 \mathrm{~m}, 1573 \mathrm{~s}, 1557 \mathrm{~m}, 1538 \mathrm{~m} \\ & 1520 \mathrm{~s}, 1504 \mathrm{~s} \end{aligned}$	465m, 396s	552s, 528 m
$\mathrm{Q}_{\mathrm{D}} \mathrm{H}$	2600s br	$1631 \mathrm{~s}, 1591 \mathrm{~s}, 1584 \mathrm{sh}, 1520 \mathrm{~s}$, 1506s		
$\underset{9}{\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnPh}_{3}}$	3067w, 3045w	1602vs, 1584s, 1573s, 1558m, 1536sh, 1531s 1514s, 1502sh	455vs	$\begin{aligned} & \text { 440s, 280vs } \\ & 228 \mathrm{~s} \end{aligned}$
$\begin{aligned} & {\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\ & 18 \end{aligned}$	3130s br	$1660 \mathrm{~m}, 1613 \mathrm{~s}, 1594 \mathrm{~s}, 1673 \mathrm{~s}, 1556 \mathrm{~s}, 1537 \mathrm{~s}$ 1522s, 1508s	452s, 396m	$608 \mathrm{vs}, 510 \mathrm{~m}$
$\underset{27}{\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]}$	3150s br	1667m, 1605s, 1585s, 1574m, 1557m, 1537m	455m, 407s	552s, 543s

${ }^{\text {a }}$ Nujol mull. ${ }^{\text {b }}$ Chloroform solution.
derivatives, showed some spectroscopic results with questionable attributions, not supplied by indubitable structural data. We also report the crystal structure of the derivative $\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$], and a comparison with related triorganotin(IV) compounds.

QH^{\prime}	R^{\prime}	$\mathrm{R}^{\prime \prime}$
$\mathrm{Q}^{\prime} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{Q}_{\mathrm{A}} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathrm{Q}_{\mathrm{N}} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathrm{Q}_{\mathrm{B}} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$p-\mathrm{Br}^{-\mathrm{C}_{6} \mathrm{H}_{4}}$
$\mathrm{Q}^{\prime H} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}
$\mathrm{Q}_{\mathrm{Cl}} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	CCl_{3}
$\mathrm{Q}_{5} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	CF_{3}
$\mathrm{Q}_{\mathrm{M}} \mathrm{H}$	QH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{Q}_{\mathrm{D}} \mathrm{H}$	CH_{3}	CH_{3}

Fig. 1. QH ligands used in this work

2. Results and discussion

2.1. Synthesis of the derivatives

The $\left[(\mathrm{Q}) \mathrm{SnR}_{3} \cdot x\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{R}=\mathrm{Ph}, x=0 ; \mathrm{R}={ }^{\mathrm{n}} \mathrm{Bu}\right.$ or Me, $x=1$) derivatives 1-27 (see Table 1) were synthesized from interaction between the sodium salts of 4-acyl-5-pyrazolones and $\mathrm{R}_{3} \mathrm{SnCl}\left(\mathrm{R}=\mathrm{Me},{ }^{\mathrm{n}} \mathrm{Bu}\right.$ or Ph$)$ in benzene or toluene solution at room temperature (Eqs. (1) and ($\left.1^{\prime}\right)$):

$$
\begin{aligned}
& \text { (Q) } \mathrm{Na}+\mathrm{Ph}_{3} \mathrm{SnCl} \xrightarrow[\text { benzene }]{20^{\circ} \mathrm{C}}(\mathrm{Q}) \mathrm{SnPh}_{3}+\mathrm{NaCl} \\
& \text { (Q) } \mathrm{Na}+\mathrm{R}_{3} \mathrm{SnCl} \xrightarrow[\text { benzene }]{20^{\circ} \mathrm{C}}(\mathrm{Q}) \mathrm{SnR}_{3}+\mathrm{NaCl} \\
& \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{y})}}\left[(\mathrm{Q}) \operatorname{SnR}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \\
& \text { 10-27 } \\
& \text { (} \mathrm{R}={ }^{\mathrm{n}} \mathrm{Bu} \text { or } \mathrm{Me} \text {) }
\end{aligned}
$$

The tributyl- and trimethyltin(IV) compounds 10-27 absorb water when exposed to atmosphere, whereas the triphenyltin(IV) derivatives $1-9$ are air and moisture stable.

Table 3
${ }^{1} \mathrm{H}$ NMR data in CDCl_{3} of free ligands and of derivatives $\mathbf{1 - 2 7}$

Compound	$3-\mathrm{CH}_{3}$	Aromatics	Sn -R	Other data ${ }^{\text {a }}$
Q'H	2.11 s	$7.30 \mathrm{~m} ; 7.55 \mathrm{~m} ; 7.90 \mathrm{~m}$		10.5 s br (O-H)
(Q^{\prime}) SnPh_{3}	1.85 s	$7.40 \mathrm{~m} ; 7.50 \mathrm{~m} ; 7.80 \mathrm{~m}$	- ${ }^{\text {b }}$	
1		7.90 d		
$\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	1.96s	$7.25 \mathrm{t} ; 7.45 \mathrm{~m} ; 7.60 \mathrm{~m}$	0.86t; 1.30 m	$1.80 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
10		7.83d	1.55m	
$\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$]	1.86	$7.25 \mathrm{t} ; 7.47 \mathrm{~m} ; 7.54 \mathrm{~m}$	0.53 s	$1.75 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
19		7.85 d		${ }^{2} J=56.66 ; 55.35$
$\mathrm{Q}_{\mathrm{A}} \mathrm{H}$	2.20 s	7.03d; 7.31 t ; 7.47 t		$3.90 \mathrm{~s}\left(\mathrm{OCH}_{3}\right)$
		7.68d; 7.90 d		
$\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnPh}_{3}$	2.00 s	6.98d; 7.36m; 7.52 d	- ${ }^{\text {b }}$	3.90s (OCH_{3})
2		$7.77 \mathrm{~m} ; 7.84 \mathrm{~d}$		
$\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.07 s	6.96d; 7.25t; 7.45t	0.85t; 1.20 m	$3.87 \mathrm{~s}\left(\mathrm{OCH}_{3}\right)$
11		7.68d; 7.70 d	1.50 m	$1.85 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	1.98 s	6.90d; $7.20 \mathrm{t} ; 7.37 \mathrm{t}$	0.47 s	$1.82 \mathrm{~s}\left(\mathrm{OCH}_{3}\right)$
20		7.50d; 7.76 d		$\begin{aligned} & 2.30 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right) \\ & { }^{2} J=57.87 ; 55.55 \end{aligned}$
$\mathrm{Q}_{\mathrm{N}} \mathrm{H}$	2.05s	$7.35 \mathrm{t} ; 7.50 \mathrm{t} ; 7.78 \mathrm{~d}$		
		7.85d; 8.37d		
$\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnPh}_{3}$	1.80s	$7.35 \mathrm{~m} ; 7.45 \mathrm{~d} ; 7.73 \mathrm{~m}$	b	
3		7.77 d ; 8.30d		
$\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	1.98s	7.22t; 7.30d; 7.40t	$\begin{aligned} & 0.85 \mathrm{t} ; 1.25 \mathrm{~m} \\ & 1.52 \mathrm{~m} \end{aligned}$	1.90s br ($\mathrm{H}_{2} \mathrm{O}$)
12		7.76t; 8.28d		
$\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	1.92s	7.30t; 7.45t; 7.72d	0.50 s	$\begin{aligned} & 1.83 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right) \\ & 2 J=57.07 ; 54.63 \end{aligned}$
21		7.78d; 8.35d		
$\mathrm{Q}_{\mathrm{Br}} \mathrm{H}$	2.10 s	7.30t; 7.45t; 7.52d		11.60 s br ($\mathrm{O}-\mathrm{H}$)
		7.66d; 7.85d		
$\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnPh}_{3}$	1.90 s	$7.33 \mathrm{~m} ; 7.45 \mathrm{~m} ; 7.62 \mathrm{~d}$	- ${ }^{\text {b }}$	
4		$7.75 \mathrm{~m} ; 7.82 \mathrm{~d}$		
$\left[\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnBu}{ }_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.02s	$7.35 \mathrm{t} ; 7.44 \mathrm{t} ; 7.48 \mathrm{~d}$	$\begin{aligned} & 0.85 \mathrm{t} ; 1.23 \mathrm{~m} \\ & 1.48 \mathrm{~m} \end{aligned}$	$1.95 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
13		7.60d; 7.78d		
$\left[\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	1.95 s	$7.25 \mathrm{~m} ; 7.35 \mathrm{~m} ; 7.55 \mathrm{~d}$	0.53 s	$\begin{aligned} & 1.90 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right) \\ & 2 \\ & { }^{2}=56.02 \end{aligned}$
22		$7.73 \mathrm{~m}$		
Q ${ }^{\prime \prime} \mathrm{H}$	2.46 s	$7.29 \mathrm{~m} ; 7.44 \mathrm{~m} ; 7.83 \mathrm{~d}$		$2.48\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$
				$12.00 \mathrm{~s} \mathrm{Br}(\mathrm{O}-\mathrm{H})$
($\mathrm{Q}^{\prime \prime}$) SnPh_{3}	2.42s	$7.30 \mathrm{~m} ; 7.40 \mathrm{~m} ; 7.70 \mathrm{~m}$	- ${ }^{\text {b }}$	$2.42 \mathrm{~s}\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$
5		7.80 d		
$\left[\left(\mathrm{Q}^{\prime \prime}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.45s	7.22t; 7.38t; 7.77 d	0.90t; 1.34 m	$2.35 \mathrm{~s}\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$
14			1.60 m	$2.00 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\left[\left(\mathrm{Q}^{\prime \prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.45s	7.22t; 7.42t; 7.68d	0.52s	$\begin{aligned} & 2.40 \mathrm{~s}\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right) \\ & 1.95 \mathrm{~s} \text { br }\left(\mathrm{H}_{2} \mathrm{O}\right) \\ & 2 J=60.12 ; 57.54 \end{aligned}$
23				
$\mathrm{Q}_{\mathrm{Cl}} \mathrm{H}$	2.68 s	$7.30 \mathrm{t} ; 7.45 \mathrm{t} ; 7.75 \mathrm{~d}$		$11.50 \mathrm{~s} \mathrm{br}(\mathrm{O}-\mathrm{H})$
$\begin{aligned} & \left(\mathrm{Q}_{\mathrm{C}}\right) \mathrm{SnPh}_{3} \\ & \mathbf{6} \end{aligned}$	2.56 s	$7.40 \mathrm{~m} ; 7.70 \mathrm{~m}$	- ${ }^{\text {b }}$	
$\left[\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.62 s	7.28t; $7.42 \mathrm{t} ; 7.75 \mathrm{~d}$	$\begin{aligned} & 0.93 \mathrm{t} ; 1.30 \mathrm{~m} \\ & 1.58 \mathrm{~m} \end{aligned}$	$1.90 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
15				
$\left[\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.58 s	7.30t; 7.42t; 7.62d	0.48s	$\begin{aligned} & 1.95 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right) \\ & { }^{2} J=66.72 ; 63.41 \end{aligned}$
24				
$\mathrm{Q}_{\mathrm{F}} \mathrm{H}$	2.47q	7.35t; 7.48t; 7.78d		
$\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnPh}_{3}$	2.28 q	$7.18 \mathrm{t} ; 7.38 \mathrm{~m} ; 7.58 \mathrm{~d}$	- ${ }^{\text {b }}$	
7		7.68 d		
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.40 q	7.28t; 7.40t; 7.67d	$\begin{aligned} & 0.85 \mathrm{t} ; 1.25 \mathrm{~m} \\ & 1.55 \mathrm{~m} \end{aligned}$	$1.72 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
16				
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.40 q	7.30t; 7.40t; 7.78d	0.48 s	$\begin{aligned} & 2.10 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right) \\ & { }_{2} J=62.02 ; 59.08 \end{aligned}$
25				
$\mathrm{Q}_{\mathrm{M}} \mathrm{H}$	2.00 s	$7.45 \mathrm{t} ; 7.55 \mathrm{t} ; 7.67 \mathrm{~d}$		$10.80 \mathrm{~s} \mathrm{br} \mathrm{(O-H)}$
				$3.63 \mathrm{~s}\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
$\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnPh}_{3}$	1.82s	$\begin{aligned} & 7.30 \mathrm{~m} ; 7.45 \mathrm{~m} ; 7.55 \mathrm{t} \\ & 7.80 \mathrm{~d} \end{aligned}$	- ${ }^{0}$	$3.50 \mathrm{~s}\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
8				

Table 3 (continued)

Compound	$3-\mathrm{CH}_{3}$	Aromatics	Sn -R	Other data ${ }^{\text {a }}$
$\left[\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	1.80 s	$7.45 \mathrm{~m} ; 7.55 \mathrm{~m}$	0.92t; 1.30m	$3.51 \mathrm{~s}\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
17			1.65 m	$1.75 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\left[\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	1.97s	$7.45 \mathrm{~m} ; 7.55 \mathrm{t}$; 8.02d	0.53 s	$3.52 \mathrm{~s}\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
26				$1.80 \mathrm{~s}\left(\mathrm{H}_{2} \mathrm{O}\right)$
				${ }^{2} J=61.53$
$\mathrm{Q}_{\mathrm{D}} \mathrm{H}$	2.40 s			$2.41 \mathrm{~s}\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$
				$3.58 \mathrm{~s}\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
$\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnPh}_{3}$	2.37 s		$7.38 \mathrm{~m} ; 7.65 \mathrm{~d}$	$2.32 \mathrm{~s}\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$
9			$7.45 \mathrm{~m} ; 7.70 \mathrm{~m}$	$3.56 \mathrm{~s}\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
$\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnBu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	2.37 s		0.93t; 1.35 m	$2.31 \mathrm{~s}\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$
18			1.65 m	$3.48 \mathrm{~s}\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
				$1.95 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
${ }_{27}^{\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]}$	2.32s		0.61s	$2.32 \mathrm{~s}\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$
				$3.45 \mathrm{~s}\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
				$2.10 \mathrm{~s} \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right)$
				${ }^{2} J=64.80 ; 62.02$

${ }^{\mathrm{a}} J$ in $\mathrm{Hz} .{ }^{\mathrm{b}} \mathrm{Sn}-\mathrm{Ph}$ protons are indistinguishable from aromatic protons of ligands.

The triphenyl- and tributyltin(IV) complexes were also obtained by reaction of $\left(\mathrm{R}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}$ with the neutral ligand QH in refluxing benzene or toluene (Eqs. (2) and (3)):

$$
\begin{align*}
&\left(\mathrm{Ph}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}+2 \mathrm{QH} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\Delta} 2(\mathrm{Q}) \mathrm{SnPh}_{3} \tag{2}\\
&\left({ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}+2 \mathrm{QH} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\Delta} 2(\mathrm{Q}) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \\
& \xrightarrow{+2 \mathrm{H}_{2} \mathrm{O}} 2\left[(\mathrm{Q}) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \tag{3}\\
& \mathbf{1 0}-\mathbf{1 8}
\end{align*}
$$

The compounds are low melting solids or thick oils, very soluble in the common organic solvents such as alcohols, acetone, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ and benzene, but insoluble in hydrocarbons and water. Conductivity measurements carried out in acetone, acetonitrile and dichloromethane attested to their covalent nature.

In chloroform solutions, the tributyl and the trimethyltin(IV) complexes are unstable and slowly give rise to the disproportionation equilibrium (4):

$$
\begin{align*}
& 2\left[(\mathrm{Q}) \mathrm{SnR}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \\
& \quad 10-27 \\
& \stackrel{\mathrm{CHCl}_{3}}{\rightleftharpoons}(\mathrm{Q})_{2} \mathrm{SnR}_{2}+\mathrm{SnR}_{4}+2 \mathrm{H}_{2} \mathrm{O} \tag{4}
\end{align*}
$$

The existence of equilibrium (4) was confirmed by the presence in the ${ }^{1} \mathrm{H}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra of resonances due to diorganotin(IV)bis(4-acyl-5-pyrazolonato) [7] and tetraorganotin(IV) species [9]. A similar dissociation was previously found also for $\mathrm{Me}_{3} \mathrm{Sn}$ (acac) [10], $\mathrm{Cl}_{3} \mathrm{Sn}$ (acac) [11] and $\mathrm{Me}_{3} \mathrm{Sn}$ (oxin) [12] (where acac $=2,4$-pentanedionato and oxin $=8$-hydroxyquinolinato). The reaction (4) also occurred when compounds 19-27 were maintained under reduced pressure at ca. $25^{\circ} \mathrm{C}$ for some weeks. In contrast, triphenyltin(IV) derivatives 1-9 are stable in solution for several days.

2.2. IR spectra

Selected IR data for the ligands and their complexes 1-27 are reported in Table 2. A complete assignment of all the bands was not possible because of the presence of overlapped absorptions; however, several indications were obtained from a close comparison between the spectra of the free ligands and those of related complexes.

The strong broad band centered in the donors at ca. $2600 \mathrm{~cm}^{-1}$, due to the intramolecular hydrogen bond ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$), disappeared in the triphenyltin(IV) derivatives $1-9$ and the carbonyl absorption at ca. $1620-1640 \mathrm{~cm}^{-1}$ shifted to lower frequencies at ca. $1610-1595 \mathrm{~cm}^{-1}$, in accordance with deprotonation of the ligand and involvement of carbonyls in bonding to tin.

In the spectra of tributyl- and trimethyltin(IV) derivatives $10-27$, a broad absorption at ca. $3200-3100 \mathrm{~cm}^{-1}$ and a medium band at ca. $1660 \mathrm{~cm}^{-1}$, assignable to $\nu\left(\mathrm{H}_{2} \mathrm{O}\right)$ and to $\delta\left(\mathrm{H}_{2} \mathrm{O}\right)$ respectively, were observed, this suggesting presence of water intermolecularly H bonded.

In the spectra of our complexes we assigned the strong or medium absorptions in the range 470-380 cm^{-1} to symmetric and asymmetric $\nu(\mathrm{Sn}-\mathrm{O})$ modes, also on the basis of the wide literature available on β-diketonato derivatives [13]. Moreover, in the spectra of triphenyltin derivatives $\mathbf{1 - 9}$, the symmetric and asymmetric stretching vibrations of the SnPh_{3} moiety, described as ' y ' and ' t ' modes in Whiffen's notation [14], appear at ca. 450,270 and $230 \mathrm{~cm}^{-1}$. The band at $1070 \mathrm{~cm}^{-1}$ is probably due to a $\mathrm{C}-\mathrm{H}$ in-plane deformation vibration of the phenyls bonded to tin [15]. In some cases we observed the band at $450 \mathrm{~cm}^{-1}$ hidden under some $\nu(\mathrm{Sn}-\mathrm{O})$ absorptions. Finally, in the spectra of trimethyltin derivatives 19-27, we assigned the strong
or medium bands in the region $570-500 \mathrm{~cm}^{-1}$ to $\nu_{\text {sym }}$ and $\nu_{\text {asym }}(\mathrm{Sn}-\mathrm{C})$ modes [16], whereas in the spectra of tributyltin derivatives $\mathbf{1 0 - 1 8}$ the same vibrations [17] were observed at ca. 610 and $510 \mathrm{~cm}^{-1}$. The presence of the $\nu_{\text {sym }}(\mathrm{Sn}-\mathrm{C})$ mode (only Raman-active in trigonal planar SnC_{3} structures having local $\mathrm{D}_{3 \mathrm{~h}}$ symmetry) indicated a deviation from planarity (local $\mathrm{C}_{3 \nu}$ symmetry).

The IR spectra of triphenyltin(IV) derivatives in chloroform solution are similar to those recorded in the
solid state. In chloroform solution, tributyl and trimethyltin(IV) compounds show a broad absorption at ca. $3400 \mathrm{~cm}^{-1}$, highfield shifted with respect to that at ca. $3100 \mathrm{~cm}^{-1}$ observed in nujol. Moreover, a strong sharp band appeared at ca. $3650-3680 \mathrm{~cm}^{-1}$. We have hypothesized that these differences are probably due to the breaking of the $\mathrm{Sn}-\mathrm{OH}_{2}$ bond. The ${ }^{119} \mathrm{Sn}$ NMR spectroscopy (see below), confirmed our hypothesis: in fact the $\delta\left({ }^{119} \mathrm{Sn}\right)$ observed for these compounds are in accordance with the formation of tetracoordinate species.

Table 4
${ }^{13} \mathrm{C}$ NMR data in CDCl_{3} of the ligands $\mathrm{Q}^{\prime} \mathrm{H}, \mathrm{Q}_{\mathrm{A}} \mathrm{H}, \mathrm{Q}^{\prime \prime} \mathrm{H}$ and $\mathrm{Q}_{\mathrm{D}} \mathrm{H}$ and of some of their derivatives ${ }^{\text {a }}$

[^1]
(a)

(b)

(c)

Fig. 3. Interconversion process proposed for (Q) SnPh_{3} derivatives.
Fig. 2. Possible isomers for $(\mathrm{Q}) \mathrm{SnPh}_{3}$.

2.3. ${ }^{l} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

The ${ }^{1} \mathrm{H}$ NMR data of derivatives $\mathbf{1 - 2 7}$ are given in Table 3. Previous papers [7] on 4-acyl-5-pyrazolonato$\operatorname{tin}($ IV) derivatives provided the basis for the assignments. The broad signal due to enolic hydrogen, always observed in the spectra of the ligands, disappeared in the spectra of complexes, thus suggesting that the donors coordinate the tin atom in the deprotonated form.

The $3-\mathrm{CH}_{3}$ resonances in the ligands shifted upfield upon coordination, the shift being generally higher in triphenyl- and trimethyltin derivatives than in tributyltin ones. Assignments of the aromatic proton signals of ligands and, for 1-9 compounds, of $\mathrm{Ph}_{3} \mathrm{Sn}$ resonances were not possible due to the presence of several overlapped bands; however, integration took their presence into account.

The protons of butyl groups were observed as a complex pattern in the region $0.85-1.65 \mathrm{ppm}$. The $\mathrm{Sn}-\mathrm{CH}_{3}$ protons absorbed as a singlet in the range $0.47-0.61 \mathrm{ppm}$. In the spectra of $\mathbf{1 0 - 2 7}$ the signal of water was generally detected at ca. $1.90-2.00 \mathrm{ppm}$.

In the ${ }^{13} \mathrm{C}$ spectra, carried out only for some derivatives (Table 4), the methyl and aromatic ligand signals were shifted downfield. This is due to deshielding upon
coordination. The chain and ring carbonyls undergo only a slight displacement. The organic groups linked to tin showed one set of resonances in the range typical of $\mathrm{R}_{3} \mathrm{Sn}$ derivatives [18]. In the spectra of $\mathbf{1 0}, \mathbf{1 1}, \mathbf{1 4}, \mathbf{1 8}$, 19 and 20 the tin-carbon coupling constants were always observed. It was impossible to record the ${ }^{1} J(\mathrm{Sn}-\mathrm{C})$ of compounds $1,2,6$ and 9 owing to the very low intensity of ipso-carbon absorption.

In the NMR spectra of our complexes we observed only one set of resonances for each magnetically equivalent proton or carbon of the ligand Q and of the $\mathrm{R}_{3} \mathrm{Sn}$ moiety. In the likely pentacoordinated triphenyltin(IV) derivatives 1-9 (see below), at least two cis-trigonal bipyramidal (cis-TBP) isomers should be possible (Figs. 2(a) and 2(b)), whereas the trans-TBP isomer (Fig. 2(c)) is not feasible, because of steric requirements of the bidentate ligand. In this case, the equivalence of the phenyl groups bonded to tin found in the ${ }^{13} \mathrm{C}$ NMR spectra could be explained with a fast intramolecular interconversion process in solution [10,12,18] (Fig. 3).

In tributyl and trimethyltin(IV) derivatives 10-27 the ${ }^{1} J(\mathrm{Sn}-\mathrm{C})$ and ${ }^{2} J(\mathrm{Sn}-\mathrm{H})$ are of the same order of magnitude to those observed for tetracoordinated species [18]. By applying the empiric relationships proposed by Lockhart and Mandes [19] and Holecek and Lycka [20], values of $\theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})$ angles of ca 110° are obtained (Table 5), which are typical of tetrahedral configura-

Table 5
${ }^{1} J(\mathrm{Sn}-\mathrm{C})$ and ${ }^{2} J(\mathrm{Sn}-\mathrm{H})$ of derivatives $10,11,14,18-27\left(\right.$ in CDCl_{3} solution), and related ($\mathrm{C}-\mathrm{Sn}-\mathrm{C}$) angles calculated on the basis of Lockhart's and Holecek's relationships [19,20]

Compound	No.	$\begin{aligned} & {\left[{ }^{2} J(\mathrm{Sn}-\mathrm{H})\right]} \\ & \left(\mathrm{H}_{2}\right) \end{aligned}$	$\begin{aligned} & {\left[{ }^{1} J(\mathrm{Sn}-\mathrm{C})\right]} \\ & \left(\mathrm{H}_{\mathrm{z}}\right) \end{aligned}$	$\begin{aligned} & \hline(\mathbf{1})^{a} \\ & (\mathrm{deg}) \end{aligned}$	$\begin{aligned} & (2)^{b} \\ & (\operatorname{deg}) \end{aligned}$	$\begin{aligned} & \hline(3)^{c} \\ & (\mathrm{deg}) \end{aligned}$
$\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Sn}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	10		365.8			111
$\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	11		355.9			110
$\left[\left(Q^{\prime}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	14		350.3			110
$\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$]	18		371.7			112
$\left[\left(Q^{\prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	19	56.66	301.6	103	110	
$\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	20	57.87	323.4	105	111	
$\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	21	57.07			110	
$\left[\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	22	56.02			110	
$\left[\left(Q^{\prime \prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	23	60.12			112	
$\left[\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	24	66.72			117	
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	25	62.02			113	
$\left[\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	26	61.53			113	
$\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	27	64.80			115	

${ }^{a}(1)\left[{ }^{1} J(\mathrm{Sn}-\mathrm{C})\right]=11.4 \theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})-875[19]$.
${ }^{\mathrm{b}}(2) \theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})=0.0161\left[{ }^{2} J(\mathrm{Sn}-\mathrm{H})\right]^{2}-1.32\left[{ }^{2} J(\mathrm{Sn}-\mathrm{H})\right]+133.4[19]$.
$\left.{ }^{3}(3){ }^{1} J(\mathrm{Sn}-\mathrm{C})\right]=9.99 \quad \theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})-746[20]$.

Table 6
${ }^{119} \mathrm{Sn}$ NMR data ${ }^{\text {a }}$ of compounds $\mathbf{1}-\mathbf{2 7}$ in CDCl_{3}

Compound	No.	$\delta(\mathrm{ppm})$	Compound	No.	$\delta(\mathrm{ppm})$
(Q') SnPh_{3}	1	-173	$\left[\left(\mathrm{Q}_{\mathrm{Cl}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	15	+136
$\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnPh}_{3}$	2	-178	$\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	16	$+143$
$\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnPh}_{3}$	3	-166	$\left[\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	17	$+103$
$\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnPh}_{3}$	4	-153	$\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	18	+93
$\left(\mathrm{Q}^{\prime \prime}\right) \mathrm{SnPh}_{3}$	5	-185	$\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	19	+145
$\left(\mathrm{Q}_{\mathrm{C}}\right) \mathrm{SnPh}_{3}$	6	-134	$\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	20	+71
$\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnPh}_{3}$	7	-132	$\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	21	$+148$
$\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnPh}_{3}$	8	-182	$\left[\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	22	$+152$
$\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnPh}_{3}$	9	-191	$\left[\left(\mathrm{Q}^{\prime \prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	23	$+57$
$\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$]	10	+126	$\left[\mathrm{Q}_{\mathrm{Cl}}\right] \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)$	24	$+106$
$\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	11	$+130$	$\left[\left(\mathrm{Q}_{\mathrm{F}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	25	$+113$
$\left[\left(\mathrm{Q}_{\mathrm{N}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	12	$+139$	$\left[\left(\mathrm{Q}_{\mathrm{M}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	23	$+88$
$\left[\left(\mathrm{Q}_{\mathrm{Br}}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	13	$+135$	$\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	24	$+89$
$\left[\left(Q^{\prime \prime}\right) \mathrm{Sn}^{\mathrm{n}} \mathrm{Bu}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	14	$+100$			

${ }^{2}$ From extemal standard SnMe_{4}.
tions. We suggest that in solution these complexes dissociate in accordance with Eq. (5):
$\left[(\mathrm{Q}) \mathrm{SnR}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \xrightarrow{\mathrm{CHCl}_{3}}(\mathrm{Q}) \mathrm{SnR}_{3}+\mathrm{H}_{2} \mathrm{O}$
10-27
($\mathrm{R}={ }^{\mathrm{n}} \mathrm{Bu}$ or Me)

2.4. ${ }^{119}$ Sn NMR spectra

The ${ }^{119} \mathrm{Sn}$ NMR data of derivatives $1-27$ are reported in Table 6. All the compounds show only one resonance.

The ${ }^{119} \mathrm{Sn}$ NMR chemical shifts of complexes $\mathbf{1 - 9}$ are in the range -130 to -190 ppm , typical of cis-TBP
triphenyltin derivatives [18a], while $\mathbf{1 0 - 2 7}$ are found to resonate in the range +90 to +150 ppm , typical of tetracoordinate tin complexes [18b,21,22]. This behavior could arise from the higher inductive electron-releasing character of methyl and butyl groups with respect to phenyl ones; the former probably weaken one $\mathrm{Sn}-\mathrm{O}$ bond to a greater extent. This hypothesis is confirmed by instability and ease of disproportionation of compounds $\mathbf{1 0} \mathbf{- 2 7}$. Sometimes several absorptions are observed at -300 to -400 ppm : they have previously been attributed to triorganotin derivatives [8], whereas they are due to $(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ species [7], formed from (Q)SnR ${ }_{3}$ by the disproportionation reaction (4).

Fig. 4. Structure of $\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ drawn with thermal ellipsoids at 50% probability.

Fig. 5. View of the hydrogen bond network. Symmetry operator: ($\left.{ }^{(}\right)-1+x, y, z ;\left({ }^{*}\right) 1 / 2+x, 1 / 2-y, z$.

2.5. Crystal structure of $\left[\left(Q_{A}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

The structure of the title compound is shown in Fig. 4 along with the atom labeling scheme used, while the intermolecular association through the hydrogen bond network is shown in Fig. 5. Interatomic distances and angles are reported in Tables 7 and 8 respectively. Atomic coordinates and isotropic thermal parameters are in Table 9 and crystal data are in Table 10. Least square planes and anisotropic thermal parameters are available as supplementary material. The tin atom is found in a distorted TBP environment, slightly deviated from the plane of the three equatorial methyl groups. The $\mathrm{Sn}(1)-\mathrm{C}(27)$ is much longer (2.18(2) \AA) with respect to the other two $\mathrm{Sn}-\mathrm{C}$ bond distances $(\mathrm{Sn}(1)-$ $\mathrm{C}(26)$ is $2.11(1) \AA$ and $\mathrm{Sn}(1)-\mathrm{C}(25)$ is 2.08(2) $\AA)$. It is also the greatest $\mathrm{Sn}-\mathrm{C}$ bond length between those reported in literature for trimethyltin(IV) derivatives [23]. The $\mathrm{C}(26)-\mathrm{Sn}(1)-\mathrm{C}(27)$ angle is $120.8(8)^{\circ}$, whereas the other two $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles are $123.8(10)^{\circ}$ and 113.3(9) ${ }^{\circ}$.

The marked distortion from the ideal TBP geometry is probably due to steric hindrance of the 4-acyl-5pyrazolonate ligand and to its different donor ability with respect to the water molecule: in fact the $\mathrm{Sn}(1)-$ $\mathrm{O}(15)$ is normal $(2.10(1) \AA$), whereas the $\mathrm{Sn}(1)-\mathrm{O}(24)$ is longer (2.41(2) \AA); $\mathrm{C}-\mathrm{Sn}-\mathrm{O}(15)$ angles are higher than $\mathrm{C}-\mathrm{Sn}-\mathrm{O}(24)$ angles, because the $\mathrm{O}(15)$ atom exerts a higher repulsion on the methyls with respect to O(24).

The $\mathrm{O}(15)-\mathrm{Sn}(1)-\mathrm{O}(24)$ axis is bent to $174.8(5)^{\circ}$ toward the edge $C(26)-C(27)$ of the trigonal plane $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$.

The 4 acylpyrazolon-5-ato ligand acts in the monodentate form through the ring carbonyl oxygen atom. So far, this is the first example of crystal structure of triorganotin(IV) compounds containing a monodentate β-diketonate ligand. The different behavior of Q^{-}with respect to acetylacetonato ligands is due to its lower donor ability. This is in fact in accordance with crystallographic studies carried out on related $(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ complexes [7], where $\mathrm{Sn}-\mathrm{O}$ bond distances are generally longer than those observed in analogous (acac) ${ }_{2} \mathrm{SnR}_{2}$ complexes [24].

Table 7
Interatomic distances (\AA) with e.s.d.s in parentheses, for $\left[\left(Q_{A}\right) \operatorname{SnMe}_{3}\right.$

$\left.\cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$			
$\mathrm{Sn}-\mathrm{O}(15)$	$2.10(1)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.38(2)$
$\mathrm{Sn}-\mathrm{O}(24)$	$2.41(2)$	$\mathrm{C}(6)-\mathrm{C}(11)$	$1.40(2)$
$\mathrm{Sn}-\mathrm{C}(25)$	$2.11(1)$	$\mathrm{C}(13)-\mathrm{C}(16)$	$1.48(2)$
$\mathrm{Sn}-\mathrm{C}(26)$	$2.08(2)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.36(2)$
$\mathrm{Sn}-\mathrm{C}(27)$	$2.18(2)$	$\mathrm{C}(16)-\mathrm{C}(21)$	$1.41(2)$
$\mathrm{O}(14)-\mathrm{C}(13)$	$1.22(2)$	$\mathrm{C}(19)-\mathrm{C}(18)$	$1.37(2)$
$\mathrm{O}(15)-\mathrm{C}(5)$	$1.23(2)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.37(2)$
$\mathrm{O}(22)-\mathrm{C}(19)$	$1.38(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.39(2)$
$\mathrm{O}(22)-\mathrm{C}(23)$	$1.47(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.41(3)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.37(2)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.40(2)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.36(2)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.40(2)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.41(2)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.38(2)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.34(2)$	$\mathrm{C}(4)-\mathrm{C}(13)$	$1.47(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.42(2)$	$\left.\mathrm{N}(2)-\mathrm{H}(241) \mathrm{C}^{*}\right)$	$1.76(2)$
$\mathrm{C}(3)-\mathrm{C}(12)$	$1.48(2)$	$\mathrm{O}(14)-\mathrm{H}(242)(* *)$	$1.87(1)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.45(2)$		

[^2]Table 8
Bond angles (deg) with e.s.d.s in parentheses, for $\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{O}(24)$	$174.8(5)$	$\mathrm{O}(15)-\mathrm{C}(5)-\mathrm{C}(4)$	$134.6(14)$
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{C}(25)$	$100.8(8)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$102.7(12)$
$\mathrm{O}(24)-\mathrm{Sn}-\mathrm{C}(25)$	$84.4(8)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$120.4(11)$
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{C}(26)$	$90.9(7)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$119.1(13)$
$\mathrm{O}(24)-\mathrm{Sn}-\mathrm{C}(26)$	$85.8(6)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	$120.5(13)$
$\mathrm{C}(25)-\mathrm{Sn}-\mathrm{C}(26)$	$123.8(10)$	$\mathrm{O}(14)-\mathrm{C}(13)-\mathrm{C}(4)$	$119.7(14)$
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{C}(27)$	$92.9(7)$	$\mathrm{C}(4)-\mathrm{C}(13)-\mathrm{C}(16)$	$120.1(13)$
$\mathrm{O}(24)-\mathrm{Sn}-\mathrm{C}(27)$	$85.4(7)$	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(17)$	$120.2(12)$
$\mathrm{C}(25)-\mathrm{Sn}-\mathrm{C}(27)$	$113.3(9)$	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$121.6(13)$
$\mathrm{C}(26)-\mathrm{Sn}-\mathrm{C}(27)$	$120.8(8)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$117.9(14)$
$\mathrm{Sn}-\mathrm{O}(15)-\mathrm{C}(5)$	$136.5(11)$	$\mathrm{C}(17)-\mathrm{C}(21)-\mathrm{C}(20)$	$119.4(16)-\mathrm{C}(21)$
$\mathrm{C}(19)-\mathrm{O}(22)-\mathrm{C}(23)$	$117.2(12)$	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(21)$	$119.1(15)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	$115.1(10)$	$\mathrm{O}(22)-\mathrm{C}(19)-\mathrm{C}(18)$	$119.9(13)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	$119.0(10)$	$\mathrm{O}(22)-\mathrm{C}(19)-\mathrm{C}(20)$	$18.4(14)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(6)$	$124.7(11)$	$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$122.3(14)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$104.9(10)$	$\mathrm{C}(7)-\mathrm{C}(7)-\mathrm{C}(8)$	$115.11(13)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$111.2(11)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.4(17)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(12)$	$120.8(12)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.2(15)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(12)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$119.1(19)$	
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$		$120.3(16)$	
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(13)$	$127.9(12)$	$121.5(17)$	
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(13)$	$106.0(11)$	$121.2(13)$	
$\mathrm{O}(15)-\mathrm{C}(5)-\mathrm{N}(1)$	$126.4(12)$		

Table 9
Atomic coordinates and isotropic equivalent thermal parameters (with e.s.d. in parentheses) for non-hydrogen atoms of $\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

Atom	x	y	z	$U_{\text {eq }}{ }^{a}\left(\AA^{2}\right)$
$\mathrm{Sn}(1)$	$0.6665(3)$	$0.11460(3)$	$0.6642(2)$	$0.0398(2)$
$\mathrm{O}(14)$	$0.981(1)$	$0.2875(6)$	$0.434(1)$	$0.063(4)$
$\mathrm{O}(15)$	$0.844(1)$	$0.0983(6)$	$0.576(1)$	$0.053(4)$
$\mathrm{O}(22)$	$0.423(1)$	$0.1693(6)$	$0.192(1)$	$0.072(4)$
$\mathrm{N}(1)$	$1.077(1)$	$0.0971(5)$	$0.6335(9)$	$0.042(3)$
$\mathrm{N}(2)$	$1.197(1)$	$0.1321(5)$	$0.6236(9)$	$0.045(3)$
$\mathrm{C}(3)$	$1.156(1)$	$0.1859(6)$	$0.561(1)$	$0.043(4)$
$\mathrm{C}(4)$	$1.012(1)$	$0.1834(7)$	$0.523(1)$	$0.045(4)$
$\mathrm{C}(5)$	$0.960(2)$	$0.1238(7)$	$0.575(1)$	$0.045(6)$
$\mathrm{C}(6)$	$1.086(1)$	$0.0325(6)$	$0.682(1)$	$0.046(4)$
$\mathrm{C}(13)$	$0.933(1)$	$0.2317(7)$	$0.446(1)$	$0.045(4)$
$\mathrm{C}(16)$	$0.799(1)$	$0.2122(8)$	$0.381(1)$	$0.044(5)$
$\mathrm{C}(19)$	$0.551(1)$	$0.1811(7)$	$0.255(1)$	$0.051(4)$
$\mathrm{O}(24)$	$0.459(2)$	$0.1224(5)$	$0.765(1)$	$0.049(4)$
$\mathrm{C}(7)$	$1.024(1)$	$-0.0206(7)$	$0.621(1)$	$0.056(5)$
$\mathrm{C}(8)$	$1.037(2)$	$-0.0847(9)$	$0.667(2)$	$0.082(7)$
$\mathrm{C}(9)$	$1.115(2)$	$-0.094(1)$	$0.776(2)$	$0.090(8)$
$\mathrm{C}(10)$	$1.176(2)$	$-0.043(1)$	$0.835(2)$	$0.082(7)$
$\mathrm{C}(11)$	$1.163(2)$	$0.226(9)$	$0.790(1)$	$0.066(5)$
$\mathrm{C}(12)$	$1.259(2)$	$0.237(1)$	$0.534(2)$	$0.065(6)$
$\mathrm{C}(17)$	$0.778(1)$	$0.1503(7)$	$0.335(1)$	$0.053(4)$
$\mathrm{C}(18)$	$0.654(2)$	$0.1335(8)$	$0.269(1)$	$0.060(5)$
$\mathrm{C}(20)$	$0.566(2)$	$0.2430(9)$	$0.305(1)$	$0.055(5)$
$\mathrm{C}(21)$	$0.691(2)$	$0.2601(7)$	$0.367(1)$	$0.055(5)$
$\mathrm{C}(23)$	$0.407(2)$	$0.1065(8)$	$0.126(2)$	$0.077(7)$
$\mathrm{C}(25)$	$0.661(3)$	$0.2200(6)$	$0.668(2)$	$0.064(5)$
$\mathrm{C}(26)$	$0.546(2)$	$0.057(1)$	$0.542(2)$	$0.074(7)$
$\mathrm{C}(27)$	$0.763(2)$	$0.071(1)$	$0.826(1)$	$0.072(7)$
a	10			

${ }^{a} U_{\text {eq }}$ is defined as the mean of the principal axes of the thermal
ellipsoid.

Table 10
Data collection and refinement of the structure of $\left[\left(\mathrm{Q}_{\mathrm{A}}\right) \mathrm{SnMe}_{3}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

Formula	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Sn}$
Formula weight	489.137
Space group	Cc
$a(\AA)$	9.644(5)
$b(\AA)$	29.058(7)
$c(\AA)$	$11.503(4)$
β (deg)	95.77(5)
$V_{c}\left(\AA^{\circ}{ }^{3}\right)$	2213.84(1.56)
Z	4
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.4675
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{cm}^{-1}\right)$	96.156
$F(000)$	992.0
Radiation (monochromated)	$\mathrm{CuK} \alpha(\lambda=1.5406 \AA)$
T of data collection (K)	293
Scan mode	$\omega-2 \theta$
Scan width (deg)	$\begin{aligned} & \Delta \omega=A+B \tan (\theta) \\ & A=1260^{\circ}, B=0.30^{\circ} \end{aligned}$
Scan speed max. (deg min ${ }^{-1}$)	32
Background/scan ratio	0.5
Data collection range (deg)	$5 \leq 2 \theta \leq 124$
Standards (measured every 97 reflections)	$-1,1,-1-1,3,0-2,0,2$
No. of unique reflections measured	1799
No. of data with $1>3 \sigma(1)$	1690
Refinement	Full-matrix least squares on F
No. of parameters refined	254
$R^{\text {a }}$	0.054
$R_{n}{ }^{\text {b }}$	0.061
$S^{\text {c }}$ (Godness of fit)	1.04
$\begin{aligned} & { }^{\mathrm{a}} R=\left(\sum\| \| F_{\mathrm{o}}\|-k\| F_{\mathrm{c}}\| \|\right) / \sum\left\|F_{\mathrm{o}}\right\| . \\ & { }^{\mathrm{b}} R_{w}=\left[\sum_{w}\left(\left\|F_{\mathrm{o}}\right\|-k\left\|F_{\mathrm{c}}\right\|\right)^{2} / \sum w\left\|F_{\mathrm{o}}\right\|^{2}\right]^{1 / 2} . \\ & { }^{\mathrm{c}} S=\left[\sum_{w}\left(\left\|F_{\mathrm{o}}\right\|-k\left\|F_{\mathrm{c}}\right\|\right)^{2} /\left(N_{\mathrm{obs}}-N_{\mathrm{par}}\right)\right]^{1 / 2} . \end{aligned}$	

In the title compound the planarity between the phenyl ring and the heterocyclic ring of pyrazolone, previously observed in $(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ [7], is absent.

Fig. 5 shows the H -bond network, involving the hydrogens of water, the chain carbonyl and the pyridinic $N(2)$ atom of the Q^{-}ligands of two different asymmetric units. The H -bond contacts are $\mathrm{O}(14)-$ $\mathrm{H}(242)=1.87(1) \AA$ and $\mathrm{N}(2)-\mathrm{H}(241)=1.76(2) \AA$ and the $\mathrm{H}(241)-\mathrm{O}(24)-\mathrm{H}(242)$ is $125.6(10)^{\circ}$.

3. Conclusions

On the basis of analytical and spectral (IR and NMR) data, we suggest that in (Q) SnPh_{3} derivatives $\mathbf{1 - 9}$ the ligand (Q^{-}) coordinates through both the carbonyl groups, with the tin in a cis-TBP environment, similar to that found in $\mathrm{Ph}_{3} \mathrm{Sn}$ (bzac) [10]. The tributyl and trimethyltin(IV) derivatives rapidly absorb a molecule of water when exposed to atmosphere, adopting a distorted trans-TBP configuration. In these complexes the Q^{-}ligand acts in the monodentate anionic O -donor form and a molecule of water is coordinated to tin. In chloroform solution the derivatives $10-\mathbf{2 7}$ lose the water and adopt a tetracoordinated geometry. Subsequently they easily undergo the disproportionation reaction (4).

4. Experimental

The reactions were carried out under N_{2} stream using Schlenk techniques. Solvents were dried by standard techniques. The samples were dried in vacuo to constant weight ($20^{\circ} \mathrm{C}$, ca. 0.1 Torr). Elemental analyses (C, H, N) were performed in house with a Carlo-Erba Strumentazione 1106 instrument. IR spectra from 4000 to 100 cm^{-1} were recorded with a Perkin-Elmer 2000 FT-IR instrument. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra were recorded on a VXR-300 Varian spectrometer operating at room temperature $\left(300 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 111.9 MHz for $\left.{ }^{119} \mathrm{Sn}\right)$. Proton and carbon and tin chemical shifts are reported in ppm vs. $\mathrm{Me}_{4} \mathrm{Si}$ and $\mathrm{Me}_{4} \mathrm{Sn}$ respectively. The tin spectra were run with a spectral width of 1000 ppm , and the chemical shifts were checked for aliasing by varying the center of the window. Each tin spectrum was acquired in ca. $1 / 2 \mathrm{~h}$ (ca. 300 transients). Melting points were measured with an IA 8100 Electrothermal instrument. The electrical resistances of solutions were measured with a Crison CDTM 522 conductimeter at room temperature.

4.1. Reagents

The ligands $Q^{\prime} H, Q_{A} H, Q_{B r} H, Q_{N} H, Q^{\prime \prime} H, Q_{C l} H$, $Q_{F} H, Q_{M} H$ and $Q_{D} H$ were prepared by the published
methods [5]. All the other chemicals were analytical reagent grade.

4.2. Syntheses of the complexes

4.2.1. [Aquotrimethyl(I-phenyl-3-methyl-4-benzoyl-pyrazolon-5-ato)tin(IV)], [(Q')SnMe $\left.{ }_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right], 19$

Compound 19 was prepared with the following procedure. A benzene solution ($30 \mathrm{~cm}^{3}$) of the ligand $\mathrm{Q}^{\prime} \mathrm{H}$ ($1.0 \mathrm{mmol}, 278 \mathrm{mg}$) was added to a methanolic solution ($10 \mathrm{~cm}^{3}$) of sodium methoxide ($1.0 \mathrm{mmol}, 54 \mathrm{mg}$) and refluxed for 1 h . A benzene solution ($20 \mathrm{~cm}^{3}$) of $\mathrm{Me}_{3} \mathrm{SnCl}(1.0 \mathrm{mmol}, 199 \mathrm{mg})$ was then added to the above solution drop by drop and the reaction mixture was stirred at room temperature for about 3 h . Sodium chloride was filtered off and the solvent removed under reduced pressure on a rotary evaporator until a thick oil was obtained. This was treated with diethyl ether and light petroleum, and a pale yellow solid afforded. This was recrystallized from toluene-petroleum ether mixture and shown to be compound 19. Compounds 1-18 and $20-27$ were obtained similarly. An alternative synthesis can also be used.

4.2.2. [Triphenyl(1 -phenyl-3-methyl-4-benzoyl-pyrazo-

 lon-5-ato)tin(IV)], [($\left.\left.Q^{\prime}\right) \mathrm{SnPh}_{3}\right], 1$A benzene solution $\left(30 \mathrm{~cm}^{3}\right)$ of $\left(\mathrm{Ph}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}(1.0$ $\mathrm{mmol}, 716 \mathrm{mg}$) was added to a benzene solution (30 cm^{3}) of the ligand $\mathrm{Q}^{\prime} \mathrm{H}(2.0 \mathrm{mmol}, 556 \mathrm{mg})$, and the reaction mixture was refluxed for about 3 h . After removing the solvent under reduced pressure on a rotary evaporator, a thick oil was obtained. This was treated with diethyl ether and petroleum ether, and a pale yellow solid afforded. This was recrystallized from benzene-petroleum ether mixture and shown to be compound 1.

4.3. Crystallographic study of $\left[\left(Q_{A}\right) \operatorname{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

Crystals of the compound were grown from a chloroform solution by slow evaporation. A colorless crystal, of approximate dimensions $0.50 \times 0.30 \times 0.30 \mathrm{~mm}^{3}$, was mounted on a Rigaku AFC5 automatic four circle diffractometer equipped with a Rigaku rotating anode ($45 \mathrm{kV}, 100 \mathrm{~mA}$). The crystal system was found to be monoclinic, and accurate cell parameters were obtained by least squares refinement of 40 reflections with $35 \leq$ $2 \theta \leq 80^{\circ}$; the space group was found to be $C c$.

1919 reflections were collected with $0 \leq h \leq 11,0 \leq$ $k \leq 23$ and $-13 \leq l \leq 13$; no decay was observed during the data collection. The ψ-scan of three different reflections ($021,042,063$) gave a minimum and maximum transmission factor equal to 0.86 and 1.00 ; the data were then corrected for the absorption by using a semi-empirical method [25].

The structure was solved by direct methods using the SIR92 program [26], six of the 28 non-hydrogen atoms in the asymmetric unit were found at this level, that is the tin atom and its five first neighbours.

The other non-hydrogen atoms were located by means of a Fourier difference map, performed by using the CRYSTALS package [27] and an isotropic refinement of these atoms gave an R equal to 0.086 . Along with the refinement, a test was performed in order to choose the correct absolute structure for the molecule, refining the Flack parameter [28] along with all the other parameters, starting from values of 0 and 1 and converging in both cases to the values of $0.1(0.03)$, without applying the Friedels law and including the anomalous scattering correction. At this stage the hydrogens were imposed by model with $d=1.06 \AA$. The structure was then anisotropically refined with the hydrogens refined as riding ($U_{\text {iso }}$ were fixed at 20% greater than the bonded atoms) giving an R equal to 0.061 . A final refinement was performed after an optimization of the weighting scheme [29-31], where a third order optimized truncated Cheybishev polynomial with coefficients $a_{1}=$ 4.40, $a_{2}=-0.205, a_{3}=2.68$, was employed [31], refining the extinction parameter as well.

The R factor was equal to 0.054 at the end of the last refinement cycle, with a maximum r.m.s. shift equal to 0.175 .

All the refinements were done taking account of the anomalous scattering contributions; the scattering factors and the anomalous contributions were taken from the International Tables for Crystallography [32]. All the calculations were carried out on a personal computer; the program PARST [33] has been used for some geometrical calculations.

Acknowledgements

Financial support from Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and the Consiglio Nazionale delle Ricerche (C.N.R.), Rome is gratefully acknowledged.

References

[1] A.G. Davies and P.J. Smith, in G. Wilkinson, F.G.A. Stone and E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol. 2, Pergamon Press, Oxford, 1982, pp. 519-627.
[2] (a) G.J.M. van der Kerk and J.G.A. Luijten, J. Appl. Chem., 4 (1954) 314; (b) G.J.M. van der Kerk and J.G.A. Luijten, J. Appl. Chem., 6 (1956) 56.
[3] (a) G. Domazetis, R.J. Magee and B.D. James, J. Organomet. Chem., 141 (1977) 57; (b) G. Domazetis, R.J. Magee and B.D. James, Inorg. Chim. Acta, 32 (1979) L48; (c) K.C. Molloy, M.B. Hossain, D. van der Helm, J.J. Zuckermann and I. Haiduc, Inorg. Chem., 18 (1979) 3507; (d) A.J. Pieters, Proc. British Insecticides and Fungicides Conf., Brighton, November, 1961.
[4] S.J. Bluden, P.J. Smith and B. Sugavanam, Pestic. Sci., 15 (1984) 253.
[5] (a) B.S. Jensen, Acta Chem. Scand., 13 (1959) 1347, 1668, 1890; (b) S. Miyazaki, H. Mukai, S. Umetani, S. Kihara and M. Matsui, Inorg. Chem., 28 (1989) 3014 and references cited therein; (c) R. Morales, H. Nekimken, C.S. Bartholdi and P.T. Cunningham, Spectrochim. Acta A, 44 (1988) 165 and references cited therein; (d) M.Y. Mirza and R.T. Bailey, J. Inorg. Nucl. Chem., 42 (1979) 772; (e) M.Y. Mirza and F.J. Nwabue, Talanta, 28 (1981) 53; (f) F. Bonati, L.A. Oro and M.T. Pinillos, Polyhedron, 4 (1985) 357 and references cited therein; (g) M.S. Nagar, P.B. Ruikar and M.S. Subramanian, Polyhedron. 6 (1987) 1913; (h) E.C. Okafor and B.A. Uzoukwu, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 97 and references cited therein; (i) E.C. Okafor, B.A. Uzoukwu, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 85.
[6] J. Elguero, Pyrazoles and their benzoderivatives, in A.R. Katritzky (ed.), Comprehensive Heterocyclic Chemistry, Pergamon Press, UK, 1984, Chapter 4, para. 4.04.4.
[7] (a) C. Pettinari, G. Rafaiani, G. Gioia Lobbia, A. Lorenzotti, F. Bonati and B. Bovio, J. Organomet. Chem., 405 (1991) 75; (b) C. Pettinari, F. Bonati, A. Cingolani, G. Gioia Lobbia and F. Marchetti, Gazz. Chim. Ital., 122 (1992) 261; (c) B. Bovio, A. Cingolani, F. Marchetti and C. Pettinari, J. Organomet. Chem., 458 (1993) 39; (d) F. Marchetti, C. Pettinari, A. Cingolani and D. Leonesi, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 1485; (e) C. Pettinari, F. Marchetti, A. Cingolani, C. Marciante, R. Spagna and M. Colapietro, Polyhedron, 13 (1994) 939; (f) C. Pettinari, F. Marchetti, D. Leonesi, M. Rossi and F. Caruso, J. Organomet. Chem., 483 (1994) 123.
[8] A. Jain, S. Saxena and A.K. Rai, Ind. J. Chem. A, 30 (1991) 881.
[9] B. Wrackmeyer, Annu. Rep. NMR Spectrosc., 16 (1985) 73.
[10] G.M. Bancroft, B.W. Davies, N.C. Payne and T.K. Sham, J. Chem. Soc. Dalton Trans., (1975) 973.
[11] P.W. Thompson and J.F. Lefelhocz, J. Organomet. Chem., 47 (1973) 103.
[12] K. Kawakami and R. Okawara, J. Organomet. Chem., 6 (1966) 249.
[13] (a) R.C. Mehrotra, R. Bohra and D.P. Gaur, Metal β-Diketonates and Allied Derivatives, Academic Press, London, 1978, Chapter 2, and references cited therein; (b) K. Nakamoto, C. Udovich and J. Takemoto, J. Am. Chem. Soc., 92 (1970) 3973, and references cited therein.
[14] (a) J.R. May, W.R. McWhinnie and R.C. Poller, Spectrochim. Acta A, 27 (1971) 969; (b) A.L. Smith, Spectrochim. Acta A, 24 (1967) 695; (c) M.S. Dance, W.R. McWhinnie and R.C. Poller, J. Chem. Soc. Dalton Trans., (1976) 2349; (d) D.H. Whiffen, J. Chem. Soc., (1956) 1350.
[15] (a) R.C. Poller, J. Inorg. Nucl. Chem., 24 (1962) 593; (b) V.S. Griffith and G.A.W. Derwish, J. Mol. Spectrosc., 2 (1960) 148.
[16] (a) B.Y.K. Ho and J.J. Zuckermann, Inorg. Chem., I2 (1973) 1552; (b) R. Okawara, D.E. Webster and E.G. Rochow, J. Am. Chem. Soc., 82 (1960) 3287.
[I7] G.K. Sandhu, G. Kaur, J. Holecek and A. Lycka, J. Organomet. Chem., 345 (1988) 51.
[18] (a) J. Holecek, M. Nadvornik, K. Handlir and A. Lycka, J. Organomet. Chem., 241 (1983) 177; (b) M. Nadvomik, J. Holecek, K. Handlir and A. Lycka, J. Organomet. Chem., 275 (1984) 43; (c) S. Weng Ng and V.G. Kumar Das, J. Organomet. Chem., 409 (1991) 143; (d) B.D. James, S. Gioskos, S. Chandra, R.J. Magee and J.D. Cashion, J. Organomet. Chem., 436 (1992) 155.
[19] T.P. Lockhart and W.F. Manders, Inorg. Chem., 25 (1986) 892.
[20] J. Holecek and A. Lycka, Inorg. Chim. Acta, II8 (1986) Li5.
[21] (a) J. Klein, F. Thunecke and R. Borsdorf, Fresenius J. Anal. Chem., 346 (1993) 789; (b) C.H. Yoder, R.A. Morreall, C.I.

Butoi, W.J. Kowalski and J.N. Spencer, J. Organomet. Chem., 448 (1993) 59.
[22] (a) D. Dakternieks, H. Zhu, D. Masi and C. Mealli, Inorg. Chem., 31 (1992) 3601 and references cited therein; (b) R. Kappor, V. Sood and P. Kapoor, Polyhedron, 14 (1995) 489 and references cited therein; (c) F. Huber, M. Vomefeld, G. Ruisi and R. Barbieri, Appl. Organomet. Chem., 7 (1993) 243 and references cited therein..
[23] (a) R. Hulme, J. Chem. Soc., (1963) 1524; (b) J. Buckle, P.G. Harrison, T.J. King and J.A. Richards, J. Chem. Soc. Chem. Commun., (1972) 1104; (c) B.Y.K. Ho and J.J. Zuckermann, J. Organomet. Chem., 49 (1973) 1; (d) N.W. Alcock and R.E. Timms, J. Chem. Soc. A, (1968) 1873; (e) P.G. Harrison, R.C. Phillips and J.R. Richards, J. Organomet. Chem., 114 (1976) 47; (f) T.J. King and P.G. Harrison, J. Chem. Soc. Chem. Commun., (1972) 815; (g) I.E. Khoo, J.-P. Charland, E.J. Gabe and F.E. Smith, Inorg. Chim. Acta, 128 (1987) 139; (h) K.C. Molloy, M.F. Mahon, I. Haiduc and C. Silvestru, Polyhedron, 14 (1995) 1169; (i) S.-G. Teoh, G.-Y. Yeap, S.-B. Teo and H.-K. Fun, Polyhedron, 14 (1995) 1051.
[24] (a) G.A. Miller and E.O. Schlemper, Inorg. Chem., 12 (1973) 677; (b) G. Poli, C.J. Cheer and W.H. Nelson, J. Organomet. Chem., 305 (1986) 347.
[25] A.C.T. North, D.C. Phillips and F.S. Mathews, Acta Crystallogr. Sect. A:, 24 (1968) 351.
[26] A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 26 (1993) 343.
[27] D.J. Watkin, J.R. Carruthers and P.W. Bettridge, CRYSTALS User Guide, Chemical Crystallography Laboratory, University of Oxford, Oxford, 1985.
[28] H.D. Flack, Acta Crystallogr. Sect. A:, 39 (1983) 876.
[29] J.R. Carruthers and D.J. Watkin, Acta Crystallogr. Sect. A:, 35 (1979) 698.
[30] D.J. Watkin, Acta Crystallogr. Sect. A:, 50 (1994) 411.
[31] E. Prince and P.T. Boggs, in A.J.C. Wilson (ed.), International Tables for Crystallography, Vol. C, Kluwer, Dodrecht, 1992.
[32] A.C. Larson, in F.R. Ahmed, S.R. Hall and C.P. Huber (eds.), Crystallographic Computing, Munksgaard, Copenaghen, 1970, p. 291.
[33] M. Nardelli, Comput. Chem., 7 (1983) 95.

[^0]: * Corresponding author.

[^1]: ${ }^{a}$ It was not possible to obtain the ${ }^{13} \mathrm{C}$ spectra of derivatives $\left[\left(\mathrm{Q}^{\prime \prime}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (23) and $\left[\left(\mathrm{Q}_{\mathrm{D}}\right) \mathrm{SnMe}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (27), because during the time necessary to acquire a sufficient number of transients, they disproportionated and the absorptions observed were those of $(Q)_{2} \operatorname{SnR} \mathbf{R}_{2}$ derivatives. ${ }^{\mathrm{b}}$ When $\mathrm{R}={ }^{\mathrm{n}} \mathrm{Bu}, \mathrm{C}(\alpha), \mathrm{C}(\beta), \mathrm{C}(\gamma), \mathrm{C}(\delta)$: when $\mathrm{R}=\mathrm{Ph}: \mathrm{C}(i), \mathrm{C}(o), \mathrm{C}(m), \mathrm{C}(p)$.

[^2]: (*) Equivalent position: $1+x, y, z .\left({ }^{*}\right)$ Equivalent position: $1 / 2$ $+x, 1 / 2-y,-1+z$.

